

Количественная оценка приращения риска и уровня опасности отступлений от требований промышленной безопасности в процессе комплексного обследования фактического состояния технологического объекта

Попов Анатолий Иванович

Зам. генерального директора ЗАО «Технориск» доктор технических наук, профессор

Всероссийская научно- практическая конференция «Актуальные вопросы промышленной безопасности»

г. Москва. 20 мая 2015 г.

Цель сообщения

Разработка и применение методики количественной оценки приращения риска аварий и уровня опасности отступлений от требований нормативных актов в области промышленной безопасности для ранжирования отступлений

Основные задачи:

- 1. Разработка методики оценки уровня опасности отступлений от требований промышленной безопасности на основе величины изменения риска.
- 2. Разработка общих положений методики количественной оценки приращения риска аварий при наличии отступлений от требований промышленной безопасности.
- 3. Разработка алгоритма расчета величины приращения риска при наличии отступлений от требований промышленной безопасности.
- 4. Проведение анализа оценки риска, уровня опасности и ранжирования отступлений от требований промышленной безопасности на примере нефтеперерабатывающего завода.

1. Требования нормативных правовых актов к оценке риска и уровню опасности (критичности) при наличии отступлений от требований нормативных правовых актов в области промышленной безопасности

- 1. Федеральный закон №116-Ф3 от 21.07.1997 г. (ст. 3 п. 4., ст. 9 п. 1., ст. 13, п. 1.).
- 2. Федеральные нормы и правила в области промышленной безопасности **«Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств»** (раздел I, п. 1.5., раздел II п. 2.1., приложение 1).
- 3. Федеральные нормы и правила в области промышленной безопасности «**Общие требования к обоснованию безопасности опасного производственного объекта»** (часть II, п. 8., раздел I, часть II, п. 9., раздел II).
- 4. Федеральные нормы и правила в области промышленной безопасности **«Правила проведения экспертизы промышленной безопасности»** (часть III, п. 30.).
- 5. Руководство по безопасности **«Методика оценки риска аварий на опасных производственных объектах нефтегазоперерабатывающей, нефте- и газохимической промышленности»**, 2014 г. (часть II, п. 7., часть IV).

2. Методика оценки уровня опасности на основе величины изменения риска при наличии отступлений от требований промышленной безопасности

Исходные положения:

- 1. Основой для оценки уровня опасности является величина изменения риска при наличии отступлений.
- 2. В качестве показателя риска применяется интегрированный риск (ΔR^{MHT}) , или его изменение, т.е. рассчитанный на основе суммы ожидаемого материального (ΔR^{M}_{i}) , экологического (ΔR^{3}_{i}) и социального ущербов (ΔR^{c}_{i}) , в соответствии с требованиями РД 03-496-02 «Методические рекомендации по оценке ущерба от аварий на опасных производственных объектах».

$$\Delta R^{MHT} = \sum_{j=1}^{K} \Delta R_{j}^{C} + \sum_{j=1}^{I} \Delta R_{j}^{3} + \sum_{j=1}^{Q} \Delta R_{j}^{M},$$

где ${\it k},~{\it l},~{\it q}$ — число сценариев соответственно с социальными, экологическими и материальными потерями.

- 2. Методика оценки уровня опасности на основе величины изменения риска при наличии отступлений от требований промышленной безопасности (продолжение)
 - 3. Предлагается установить три области уровней опасности критичности отступлений в соответствии с ФНИП «Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств». Приложение №1.

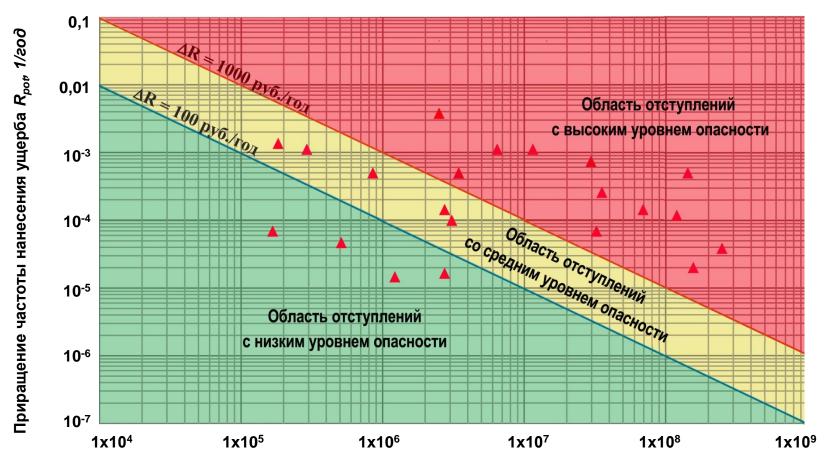
Области уровней опасности - критичности

Первая область высокий уровень опасности

Вторая область средний уровень опасности

Третья область низкий уровень опасности

- 2. Методика оценки уровня опасности на основе величины изменения риска при наличии отступлений от требований промышленной безопасности (продолжение)
 - 4. Устанавливается усредненное (базовое) значение приращение ожидаемого ущерба отступления (ΔR) на основании взаимосвязи между приращением частоты нанесения ущерба (R_{pot}) из-за отступления и размером ущерба (Y).

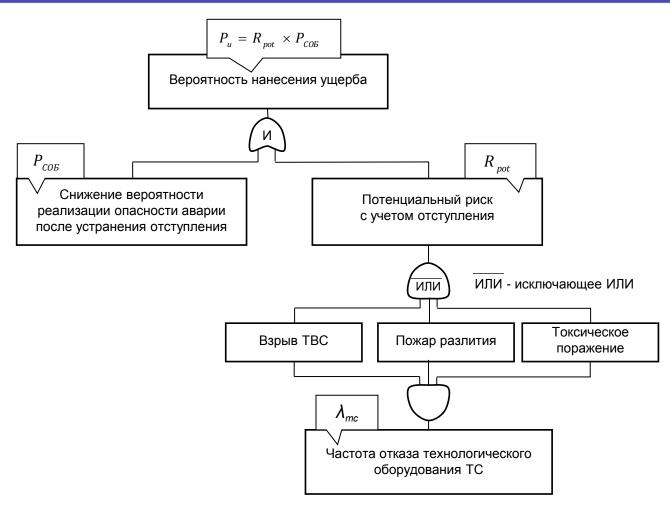

Таблица 1

R _{pot} , 1/20d	10 ⁻³	10-4	10 ⁻⁵	10-6	10 ⁻⁷
Ү, руб.	10 ⁶	10 ⁷	10 ⁸	10 ⁹	10 ¹⁰
∆R, руб./год	1000	1000	1000	1000	1000

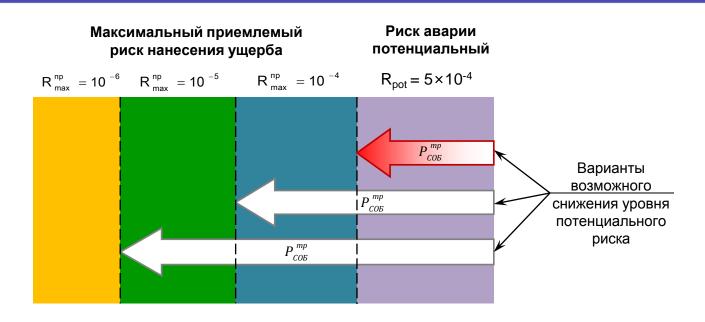
Усредненное базовое значение $\Delta R=1000$ руб./год. (В качестве одного из возможных вариантов применительно к объекту нефтеперерабатывающей отрасли).

5. В качестве нижней границы приращения ожидаемого ущерба для оценки уровня опасности предлагается величина не менее 10% от усредненного базового значения.

Схема определения уровня опасности (критичности) отступлений от требований промышленной безопасности


Возможный полный ущерб от аварии, руб.

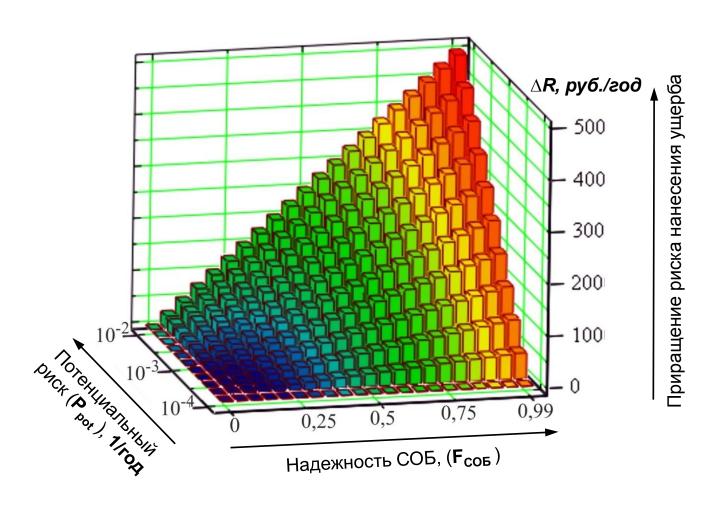
3. Методика количественной оценки приращения риска аварий при наличии отступлений от требований промышленной безопасности


Исходные положения:

- 1. За основу взят методический подход, изложенный в международных стандартах IEC61508, IEC61511, а также Российских стандартах ГОСТ Р МЭК 61508, по функциональной безопасности и ГОСТ Р МЭК 61511 по безопасности для технологических процессов в промышленности.
- 2. Надежность системы обеспечения безопасности (F_{COS}) взаимосвязана с вероятностью отказа системы обеспечения безопасности объекта (P_{COS}) соотношением $F_{COS} = (1 P_{COS})$.
- 3. В данной задаче рассматривается вероятность нанесения социального, материального, экологического ущерба (P_u).
- 4. Вводится понятие уровня максимально приемлемого риска нанесения ущерба R_{max}^{np}), связанного с устранением отступления.

Схема развития аварии, связанной с наличием отступления от требований промышленной безопасности

Графическая интерпретация применения понятия уровня максимально приемлемого риска R_{max}^{np} связанного с устранением отступления



Согласно ГОСТ Р МЭК 61508-5-2007 $P_{cos} \leq \frac{R_{max}^{np}}{R_{pot}}$.

Приращение риска (ΔR_{pot}) частоты нанесения ущерба (Y) вследствие возможной аварии, связанной с отступлением запишем в виде $\Delta R_{pot} = R_{pot} - P_{cos} \cdot R_{pot} = R_{pot} \cdot (1 - P_{cos})$, 1/rog. Для і-го элемента технической системы при наличии і-го отступления ожидаемый ущерб

$$\Delta R_i = R_{pot} \cdot Y - P_{COS} \cdot R_{pot} \cdot Y = R_{pot} \cdot (1 - P_{COS}) \cdot Y = \Delta R_{pot} \cdot Y$$
, py6./200.

Взаимосвязь основных параметров обеспечения безопасности при наличии отступлений от требований промышленной безопасности

Исходные события и последовательность этапов количественной оценки приращения ожидаемого ущерба при наличии отступлений от требований промышленной безопасности

1. Выполняется анализ акта обследования объекта на соответствие или несоответствие требований норм и правил в области промышленной безопасности.

Фрагмент акта обследования

№ п. ФНиП ОПВБ	Нормативное требование	Сведения о соответствии/ несоответствии	Сведения об отступлениях	
•••	•••	•••		
2.4.	При наличии в технологическом оборудовании опасных веществ или возможности их образования, эксплуатирующей организацией разрабатываются необходимые меры защиты персонала от воздействия этих веществ при взрывах, пожарах и других авариях	соответствует	_	
•••		•••		
4.1.5.	Компримирование и перемещение горючих газов должно производиться центробежными или винтовыми компрессорами	не соответствует	На установке для компримирования и перемещения горючих газов используются поршневые компрессора (поз. ПК-1; ДК-1)	
•••				

Исходные события и последовательность этапов количественной оценки приращения риска при наличии отступлений от требований промышленной безопасности (продолжение)

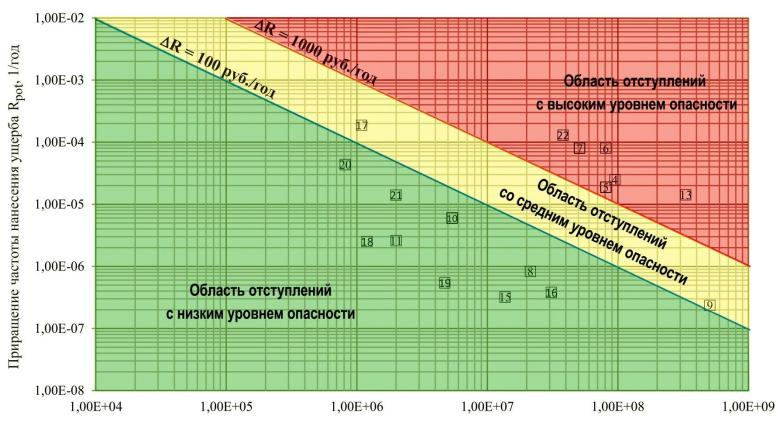
- 2. Определяется для рассматриваемой технологической установки вероятность реализации исходной аварийной ситуации (λ_{mc}) без учета требований соответствующего пункта ФНиП ОПВБ для і-го элемента технической системы. (Могут использоваться данные ПЛАС, ПЛА, ПМЛА, ДБ и другие документы, либо выполняются специальные расчеты).
- 3. Рассчитывается $P_A = \prod_k P_k$ вероятность развития аварии по j-му сценарию, как вероятность сложного события, состоящего в совместном выполнении элементарных событий (P_k) . Элементарные события (P_k) определяются по деревьям событий для соответствующего сценария развития аварии на оборудовании, содержащем опасные вещества. Могут быть использованы деревья событий приведенные в Приложении Nº4 Руководства по безопасности «Методика оценки риска аварий на опасных производственных объектах нефтегазоперерабатывающей, нефте- и газохимической промышленности».
- 4. На основе анализа ожидаемых последствий развития аварии оценивается вероятность поражающего воздействия (P_E).
- 5. Рассчитывается $R_{pot} = \lambda_{mc} \cdot P_A \cdot P_E$, 1/20 δ исходная вероятность нанесения ущерба (потенциальный риск) вследствие отступлений от требований ФНиП ОПВБ.
- 6. По величине (R_{pot}) определяется (задается) соответствующий уровень максимально приемлемого риска нанесения ущерба при устранении отступлений (R_{max}^{np}) для принятия решения о требуемой надежности системы обеспечения безопасности (СОБ) и обоснования уровня полноты безопасности (УПБ) объекта.

Исходные события и последовательность этапов количественной оценки приращения риска при наличии отступлений от требований промышленной безопасности (продолжение)

- 7. Рассчитывается $P_{cos} \leq \frac{R_{np}^{max}}{R_{pot}}$ требуемая вероятность отказа системы обеспечения безопасности объекта (СОБ).
- 8. Рассчитывается $\Delta R_{pot} = R_{pot} \cdot (1-P_{COB})$, 1/200 приращение частоты нанесения ущерба вследствие аварии, рассчитанное как разность уровня риска технологической системы, имеющей отступления от требований ФНиП ОПВБ и уровня риска технической системы, соответствующей требованиям ФНиП ОПВБ, с учетом надежности системы СОБ.
- 9. Определяется величина возможного ущерба от аварии (Y_A) в рублях. Здесь возможно использование результатов расчетов ущерба, приведенных в декларациях промышленной безопасности.
- 10. Оцениваются возможные потери от простоя технологического оборудования $W_{np} = \tau \cdot W_{vac}$, где $\tau = 24 \cdot n$ количество часов простоя в течение (n) суток. Количество суток простоя варьируется в зависимости от тяжести последствий аварии. (W_{vac}) потери от простоя оборудования установки в течении 1 часа.
- 11. Рассчитывается возможный полный ущерб от аварии $Y = Y_A + W_{np}$.
- 12. Оценивается приращение ожидаемого ущерба $\Delta R = \Delta R_{pot} \cdot Y$ руб./год вследствие отступлений от требований ФНиП ОПВБ.

Результаты оценки приращения ожидаемого ущерба (△R) отступлений от требований промышленной безопасности на примере нефтеперерабатывающего завода

Установка ЭЛОУ-АВТ-6 секция висбрекинга гудрона


№ отступ- ления	∆R _{pot} , 1/год	Ү, руб.	∆R, руб./год	№ п. ФНИП ОПВБ	Отступления при несоответствии
6	7.96E-5	8.09E7	6.44E3	3.21.	На установке не предусмотрены специальные системы аварийного освобождения или системы с использованием действующего оборудования для аварийного освобождения технологических блоков от обращающихся продуктов
7	1.29E-4	3.79E7	4.88E3	5.3.1.	Дежурные (пилотные) горелки к печи П-104 не оснащены запальными устройствами
•••	•••	•••	•••	•••	
10	2.46E-5	9.49E7	2.34E3	3.20.	Существующие схемы освобождения технологических блоков I и II категории взрывоопасности не оснащены запорными устройствами с автоматически управляемыми приводами
•••	•••	•••	•••	•••	
17	1.87E-5	1.09E7	204	6.8.2.	Не предусмотрены технические средства, обеспечивающие в автоматическом режиме оповещение об обнаружении, локализации и ликвидации выбросов опасных веществ
•••	•••	•••	•••	•••	
21	6E-6	5.38E6	32.28	5.1.8.	В паспортах оборудования, трубопроводной арматуры, средств защиты и приборной техники не указаны показатели надежности
22	1.4E-5	2E6	28	10.3.	Открытые и закрытые насосные и компрессорные оснащены неэффективными системами оповещения персонала об аварии. Уровень шума в насосных и компрессорных превышает уровень звука средств громкоговорящей связи с операторной

Приращение частоты нанесения ущерба

Результаты оценки уровня опасности (критичности) и ранжирования отступлений от требований промышленной безопасности на примере нефтеперерабатывающего завода

Установка ЭЛОУ-АВТ-6 секция висбрекинга гудрона

Возможный полный ущерб от аварии, руб.

Выводы и рекомендации

Предложенная методика количественной оценки приращения риска и уровня опасности аварий, которые могут возникать в связи с наличием отступлений от требований промышленной безопасности на опасном производственном объекте позволяет по результатам комплексного обследования фактического состояния технологического объекта произвести ранжирование отступлений по уровню опасности с целью анализа состояния промышленной безопасности объекта дальнейшей безопасной компенсационных мер ПО комплекса эксплуатации.

Спасибо за внимание!

Количественная оценка приращения риска и уровня опасности отступлений от требований промышленной безопасности в процессе комплексного обследования фактического состояния технологического объекта

Заместитель генерального директора ЗАО «Технориск», доктор технических наук, профессор Попов Анатолий Иванович

тел.: (8452) 549-549; (927) 226-76-67

e-mail: info@technorisk.ru

www.technorisk.ru; www.технориск.рф